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We investigate interface dynamics in 1 + 1 dimensions, respecting reflection sym- 
metry. In the continuum approach of Kardar, Parisi, and Zhang, the leading 
nonlinearity is then of the form (Vh~) 3. On the basis of Monte Carlo simulations 
for a driven lattice gas, we argue that the nonlinearity is marginally irrelevant. 
Thus, the universality class is the one of equilibrium interfaces with a purely 
relaxational bulk dynamics. 

KEY WORDS:  Interface growth; driven lattice gas; fluctuation phenomena; 
random processes. 

1. I N T R O D U C T I O N  

Recently, Derrida et aL (1) studied the fluctuations of an interface in a two- 
dimensional cellular automaton (the Toom model) at low noise strength. 
The particular dynamical rules are of no importance here. The reader 
should only know that for the orientation chosen, the interface dynamics 
is symmetric under reflection relative to the average location. Such a sym- 
metry is well known for equilibrium interfaces. It came as a surprise to find 
this feature also in nonequilibrium. In ref. 1 it was argued, following the 
approach of Kardar  et al., (2~ that on a sufficiently coarse scale the one- 
dimensional interface is governed by 

oh, oh,  2h, 
-~-[= - V  -~x - ,~ \ ax / + v ~x---7 + ~, (1) 
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Here, ht(x) is the height of the interface above the point x of a reference 
line. The term v ~2ht/Ox2 describes the smoothening due to rigidity against 
bending. ~/t is white noise with covariance 

(n,(x) n,,(x')> = ~a(t-  c) a ( x -  x') (2) 

The first two terms come from a gradient expansion of the orientation- 
dependent interface velocity. In order to respect the symmetry h~--* - h , ,  
the even terms in this expansion must vanish. 

In ref. 1, only the linear theory (~.=0) was studied theoretically, 
leaving open whether the large-scale properties of the interface would be 
modified by the cubic nonlinearity 2(Ohj~x) 3. The numerical simulation of 
the Toom model was inconclusive in that respect. Some features, such as 
interface correlations, are in accordance with the linear theory. On the 
other hand, the width of an initially flat interface was found to grow faster 
than predicted by linear theory. In this contribution, our goal is to under- 
stand whether Eq. (1) defines a new universality class of surface growth. 
Since ,~(~h,/~x) 3 scales a s  v(~Zht/~x 2) and the noise, the problem is whether 
the cubic nonlinearity is marginally relevant or not. This will be 
investigated in the context of (1 + 1)-dimensional models. 

2. D R I V E N  LATTICE GAS 

Since the issue is universality, a priori we have a wide choice of growth 
models. In particular, there is no reason to stick to the effective interface 
model derived from the Toom dynamics in the low-noise approximation. 
From our experience with growth models we know that scaling regimes 
may differ widely. ~3'4) Thus, our freedom must be used so to minimize 
crossover effects. We only require: 

(i) h t ~  - h t  symmetry 

(ii) A continuously tunable 2 

(iii) Theoretical and numerical simplicity 

For one-dimensional interfaces, it is more convenient to consider the 
interface slope. It is governed by a stochastic exchange dynamics with 
conservation law. Physically, the slope dynamics can be viewed also as a 
driven lattice gas or as a Ginzburg-Landau type B model. Only for an 
equilibrium interface does the lattice gas satisfy detailed balance. We have 
tried several models, including variations on the Toom interface dynamics 
and a discretization of Eq. (1). The by far most convincing results are 
obtained from a simple nearest neighbor exchange dynamics. To define it, 
we need a little bit of notation. 
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We consider spins a i = 4-1 on a one-dimensional lattice, j =  1,..., L, 
with periodic boundary conditions (aL +1 = a 1). A whole spin configuration 
is denoted by a. The dynamics is given through nearest neighbor spin 
exchanges. The rate to exchange the spins aj and aj+l is c z j + i ( a ) ,  which 
is assumed to depend only on the two nearest neighbors, ai_ 1 and ai+2, 
of the bond (j, j +  1). If we require reflection symmetry a -*  - a ,  then the 
most general form of the exchange rates is as shown in Fig. 1 with 
cq, a2, cq, ~4 >~ 0. In terms of the spin variables, we have 

Cj, j+  1(0") = ~6 ( l  -{- O ' j ) ( l  - -  O'j+ 1)[-(0~1 + 0~ 2 "{- 0~ 3 + 0~4) 

+ (~1 .qL 0~ 2 __ ~3 - -  ~4 )  O'j - 1 

"-}- (0~1 - -  0~2 AI- ~3 - -  ~4)  O'j+ 2 + (~1 - -  ~2 - -  ~3 -~ :~4) O'j T M  lO ' j+  2 ]  

+ l ( l  - ai)(1 + ai+ 1)E(cq + c% + ~3 + ~4) 

Jr- ( - - ~ 1  Jr- 0(2 - -  0~3 JI- (X4)O'j+ 2 

-]- (0(1 - -  0~2 - -  ~3 + 0~4)O'j--10"j+ 2 ]  ( 3 )  

The probability distribution on spin configurations is governed by the 
master equation 

d L 
dtP~(a)=  ~ Cj, j + l ( f f J ' J+ l ) p t (17J ' J+ l ) - -C j ,  j + l ( f f ) p t ( f f )  (4) 

j = l  

where a i'; denotes the spin configuration a with the spins at sites i and j 
exchanged. To avoid wiggles on the scale of the lattice constant, we define 
height differences as 

h,(x + 1) - h,(x) = [ ax+  1(0 + ~r~(t)]/2 (5) 

�9 �9 0 �9 a ~ - -  > �9 0 �9 �9 

ae - - - -> �9 0 �9 0 �9 �9 0 0 < a3 

O~ 3 - - - -~  
0 Q 0 �9 < ae 0 0 �9 Q 

a4 ------> 0 0 | 0 0 Q 0 0 < ar 

Fig. 1. Rates for the nearest neighbor spin exchange dynamics. 
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with ~(t) the spin configuration at time t. From (5), we obtain the height 
h,(x) by integration starting with h,(1). We only have to take into account 
that this references point is changing itself in time and is given by the spin 
current through the bond (N, 1) integrated up to time t. Clearly, the 
average slope 

m = -- aj(t) (6) 
L j=l 

is conserved. Modulo that slope, ht(x) is periodic with period L. 
In passing, we mention that the slope of the Toom interface is also 

governed by a spin exchange dynamics: in the case of a symmetric noise, 
a spin searches for the first spin with opposite sign to the right and the pair 
is exchanged with rate one. Thus, the exchange rates are of arbitrary range. 
Modifications are, e.g., to restrict the search rule to a maximal range. 

If we define an "inverse temperature" fl through 

a2 = e4~ (7) 
~3 

then for 

g l - ~ 4  (8) 

the exchange rates (3) are those of a spin chain with Kawasaki dynamics. 
For fixed magnetization m, the steady state p(S)(o) for the master 
equation (4) is given by 

p(S)(a) = ~ exp fl ajaj+ 1 (9) 
j = l  

which we recognize as the one-dimensional nearest neighbor Ising model. 
The exchange rates satisfy detailed balance with respect to pr Large- 
scale fluctuations in the magnetization are governed by fluctuating 
hydrodynamics. These are equations of the form (1), (2) with v = 0 = 2, v 
the bulk diffusion coefficient, and ~ = Z/2v, with Z the static compressibility. 

To our surprise, even if "1 # " 4 ,  the stationary solution to the master 
equation (4) with fixed m is still given by (9). However, detailed balance 
is now violated. One way to convince oneself is by computing the average 
current j(m) as a function of the magnetization. In the limit L--* o% we 
obtain 

j(m) = �89 - (x1)(-/,H "4- <0"00"10"2 >m) (10) 
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where ( - )m  denotes the expectation with respect to (9) for fixed m in the 
limit L ~ oe. The three-point correlation is computable through the trans- 
fer matrix, but the resulting expression is not very illuminating. Therefore 
we only note that j(m)= - j ( -m)  and j ( - 1 ) = j ( 0 ) = j ( 1 ) = 0 ,  j(m) has 
the shape of a cubic polynomial with a single maximum and minimum 
inside [ -  l, 1 ]. 

We return to the interface dynamics. Reflection symmetry requires that 
we choose L even and an equal number of up and down spins, i.e., m = 0. 
To make contact with the continuum theory (1), (2), we would like to 
identify the coefficients there in terms of the spin model. For this purpose 
we observe that an interface with slope m progresses along the h axis with 
velocity j(m). Thus, we set ( ' =  d/dm) 

v = j ' (0)  = - �89 - ~1)(1 - tanh fl)2 (11) 

2 = ~j"(0)  = �89 ~1)(1 - tanh/3)3(1 + tanh fl) 1 (12) 

Equations (11), (12) should not be taken literally, because we compare 
fully renormalized coefficients from j(m) with bare coefficients in (1). At 
the present stage, v and 7 cannot be obtained separately, only their ratio 

2v )~=(1 + t a n h f l ) ( 1 - t a n h f l )  - I  (13) 

which follows by equating the spatial interface fluctuations in the steady 
state for (1), (2) and for (4). Equation (12) shows that 2 ~ 0  for / ~  
(ferromagnetic steady state) and that 2 ~ o v  for /~ - - , -o r  (anti- 
ferromagnetic steady state). More importantly, if we fix e 4 - c q  and 
consider a range of/~ such that the correlation length is less than three 
lattice constants, then 2 varies over three decades. Therefore, we can reach 
strong nonlinearities without one of the rates becoming too small. 

3. M O N T E  C A R L O  S I M U L A T I O N S  

We simulated the nearest neighbor exchange dynamics defined by the 
rates of Eq. (3) and with periodic boundary conditions. Since we are 
interested in systems where detailed balance is violated, we chose ~1 r c~4 
and varied the nonlinear coupling constant 2 through the ratio ~2/c%. The 
continuous-time master equation (4) corresponds to sequential random 
updating. For reasons of speed, we prefer parallel updating implemented as 
follows. The lattice is partitioned into four sublattices. Two neighboring 
sublattices are chosen at random. Then, in parallel, each pair of neigh- 
boring spins is exchanged with probability ~1, c~2, ~3, 0~4 according to 
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Fig. 1. We avoid the formation of fronts by choosing ~1 = ~2 = 1/2 (rather 
than et = ~2 = 1 ). Simulations were carried out with a fully vectorized multi- 
spin coding algorithm (9 which was run on Cray YMPs. We checked that 
an independently written nonmultispin program gave results consistent 
with those of the multispin program. 

In general, the large-scale behavior of interfaces is characterized by 
two scaling exponents, the static exponent ~ (which governs the typical 
spatial fluctuations of a dynamically stationary piece of the interface) and 
the dynamic exponent z (which governs the temporal spreading of interface 
fluctuations). In our model, the steady state for the interface slope has a 
finite correction length. Therefore, the static exponent is given by 

= 1/2 (14) 

To determine the dynamic exponent, we follow the standard route and 
consider the width w(t )  of the interface defined as 

w(t)2 = <(h , -  <h,)) 2) (15) 

where the brackets refer to the spatial average over all sites j =  1,..., L. 
Initially, h o ( x ) =  0, which corresponds to a configuration of alternating + 
and - spins. The width should scale as 

w(t )  ~ t ~/z (16) 

for 1 ~ t r L z. Time t is measured in unit of Monte Carlo attempts per spin. 
Figure 2 shows w(t )  2 versus t for different values of the ratio ~2/e3 
[compare with Eq. (7)]. As explained before, we chose el = ez = 1/2. The 
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D O~ ~ o 
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10 -1 ..... * 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " 1 0 o0~176176 1 0 2 1 0 s 1 0 4 

o 

Fig. 2. Log-log plot of the squared width w 2 versus time t for the driven lattice gas with 
parameters el = e2= 1. Curves are, respectively, from top to bottom, for e3 = e4 = �88 ([3), -~ 
(O),  and ~ (�9 The system sizes are L =  5120. Averages have been taken over 512 samples. 
The symbols are much larger than the typical spread of the points around the fit straight lines. 
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coupling constant is increased by setting 0~ 3 = ~ 4  = 1/2" with n = 2, 3, 4, 6. 
The system sizes are L = 5 1 2 0  and averages have been taken over 512 
samples up to t = 5 x 10 4. 

We analyze the data by first determining effective exponents in 
successive time intervals [tn, tn+l].  Beyond a certain time, which increases 
with the coupling constant, the effective exponent becomes independent of 
the interval (within the error bars). To obtain then the optimal value for 
z, we make a least square fit in an interval I-t_, t+] ,  where t_ is in a 
region where the effective exponent has reached a constant value and 
t+  = 5 •  10 4. The number of data points used is much larger than the 
number of symbols drawn in Fig. 1. Numerical values for the dynamic 
exponent z can be found in Table I. For  example, for c~2/c~3 = 2, a least 
square fit in the interval 40 < t < 5 x 10 4 gives z = 2.009 + 0.015. Simulations 
of systems of smaller sizes together with finite-size scaling did not suggest 
z r 2 in the asymptotic limit L ~ oe. 

For  short times, typically t < 1...100, depending on the ratio ez/e3, 
w(t) increases faster than t 1/4. This initial regime can be explained 
qualitatively in the following fashion. Since e3/~2 ~ 1, at first, a dilute gas 
of elementary terraces of height + 1 and width 1 is formed. Because 
~1 r e4, these terraces drift to the right and can either grow in a diffusive 
fashion or be annihilated as the two ledges of the terrace meet. Initially, the 
density of terraces is proportional to t, implying w(t)~ t 1/2. The crossover 
sets in when steps collide. 

The scaling of the interface reappears in the dynamical structure 
function S(x, t) in real space defined as 

S(x, t)= (axo(to)crx+xo(t + to)) (17) 

where the brackets refer to the average over the stationary measure. By 
translational invariance, it is independent of xo and to, but in practice, to 
obtain good statistics, we average over all x o from 1 to L and over different 

Table I. Numerical  Values for the Exponent z for Di f ferent  Values of az/o 3 a 

e ff~3 t t+ z Az  

2 40 5 • 104 2.009 0.015 
4 100 5 • 104 2.00 0.03 
8 1000 5 • 104 1.995 0.04 

32 5000 5 • 104 1.97 0.08 

a Our values of z are obtained from least square fits of the curve log w2(t) versus log t in 
intervals I t _ ,  t+ ]. We keep cq = % = 1/2 and c% = ~4. Here Az  is the uncertainty in z. 
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values of to (typically ten values). In order to establish a stationary state, 
we start from a random spin configuration and let it evolve through 
Glauber dynamics (inverse temperature #, zero magnetic field) for about 
ten Monte Carlo steps. In general, the resulting configuration will have a 
nonzero magnetization and we need to let it relax further till we have found 
some particular time where the magnetization goes through zero. Since we 
have set # < 0, the steady state is antiferromagnetic and initially S(x, 0) has 
a sharp maximum (equal to 1) at x = 0, becomes negative for x = 1, and 
shows oscillations between positive and negative values for moderate x. 
For  large x, it decays to zero. The remnants of this oscillatory behavior are 
still seen up to t = 2. For  t ~> 4, S(x, t) is nearly Gaussian, centered at some 
positive value Xo(t). We focused on the moments of S(x, t), 

L 

( 1 ) , =  ~ S(x, t) ( lga) 
x = O  

L 

(x ) ,=  y~ xS(x, t) (lSb) 
x = O  

L 

( ( x -  ( x ) , ) 2 ) ,  = Y, ( x -  ( x ) , )  ~ S(x, t) (18c) 
x = O  

In practice, because the sampling of S(x, t) is rather noisy for large x, the 
summations in Eqs. (18) are restricted to x_  < x < x + ,  where x+ is the 
first zero to the right and x the first zero to the left of the central peak 
of S(x, t). Figure 3 shows ( x ) , ,  ( ( x - ( x ) , ) 2 ) ,  versus t up to t =  128 
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Fig. 3. Log-log plot of the moments  of the structure function S(x, t) versus time t, for 
a 1 = ~ 2 = � 8 9  ~3=~4= �88  ([5) First moment  ( x )  and ( ~ )  second moment  ( ( x - ( x ) , ) 2 ) t .  
System sizes are L = 8192 and  averages have been taken over 100 samples. 
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for ~1 ~---~2 = 1/2, ~3=~4 = 1/4. System sizes are L = 8 1 9 2  and averages 
have been taken over 100samples. We observed that (1)~  remained 
approximately constant, while ( x ) t  is proport ional  to t for t > 4 .  The 
truncated second moment  scales as 

( ( x -  ( x  ) , )2 ) ,  ~ t 2/~ (19) 

A least square fit to a straight line in the interval 4~<t~< 128 gives 
z =  L93_+0.1 and provides an independent check of the dynamic scaling 
exponent. 

We also studied the dynamic structure function S(k, t) in Fourier 
space. Simulations were done independently from those for S(x, t), since 
S(k, t) fluctuates considerably and must be averaged over a large number 
of samples. Linear fluctuation theory predicts that, in the hydrodynamic 
regime, k small, t large, with kZt of order one, S(k, t) should behave as 

S(k, t) "~ S(k, 0) exp( - ict - Dk2t) (20) 

where c = j ' ( 0 )  is the sound velocity and D is the bulk diffusion coefficient. 
We simulated 10,240 systems of size L = 5 1 2 ,  with ~1 =~2 = 1/2 and 
~3=~4 = 1/4. To remain in the hydrodynamic regime, only values for 
k < 0.16kmax were retained (kmax is the edge of the first Brillouin zone). In 
this region, S(k, 0) was approximately constant. To check (20), in Fig. 4, 
we plot log(IS(k, t)f/S(k, 0)) versus k2t for different times from t =  1 to 
t = 128. The data collapse well onto a single straight line, supporting the 
Gaussian character of S(k, t). 
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Fig. 4. Data collapse plot of log lS(k, t)l/S(k, 0) v e r s u s  k2t for different values of t: t = 1 ([]), 
2 (O), 4 (A), 8 (O), 16 (+), 32 (x), 64 (*), and 128 (~), with ~1=~2= =1 and a3=~4=�88 
The system sizes are L=8192 and averages have been over 10,240 samples, and over 
10 different times for each sample. 
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4. C O N C L U S I O N S  

Both the nonstationary width w(t)  and the stationary structure 
function yield the dynamical exponent z = 2 within error bars. Further- 
more, the structure function is approximately Gaussian. Thus, by conven- 
tional standards, our numerical results demonstrate convincingly that the 
cubic nonlinearity is marginally irrelevant. 

On a theoretical level it can therefore be treated perturbatively. We 
investigate only the stationary fluctuations and follow the mode coupling 
analysis of van Beijeren et a/. (6) (The methods of mode coupling theory are 
further explained in ref. 7). This leads to a nonlinear equation for the 
steady-state structure function S(k,  t) of the interface slope in a frame of 
reference moving with velocity c, 

0_ 
S(k ,  t) = - v k 2 S ( k ,  t) - 622kZS(k, O) - 1 f ods  S(k,  t - s) S �9 S �9 S(k,  s) 

Ot 

(21) 

Here S(k ,  0) is the static structure function and the asterisk denotes 
convolution in k-space. The prefactor originates in a Gaussian factorization 
of the six-point function. We search for a scaling solution of the form 
e x p { - k Z [ v t  + at( log( t )  ~] }. Inserting this ansatz in Eq. (21) and taking the 
limit k --* 0 results in /3 = 1/2, a = (12~/xf3)1/22)~, with Z = S(k ,  0) at k = 0. 
Thus the truncated second moment of the structure function [see Eq. (18)] 
should grow in time as 

< ( x -  <x>,)2>t ~ t(log t) ~/2 (22) 

We did not attempt to extract logarithmic corrections from our numerical 
data. However, the dynamic exponent z seems to lie systematically some- 
what below two, which is consistent with the prediction (22). 
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